Package: GPLTR 1.5

GPLTR: Generalized Partially Linear Tree-Based Regression Model

Combining a generalized linear model with an additional tree part on the same scale. A four-step procedure is proposed to fit the model and test the joint effect of the selected tree part while adjusting on confounding factors. We also proposed an ensemble procedure based on the bagging to improve prediction accuracy and computed several scores of importance for variable selection. See 'Cyprien Mbogning et al.'(2014)<doi:10.1186/2043-9113-4-6> and 'Cyprien Mbogning et al.'(2015)<doi:10.1159/000380850> for an overview of all the methods implemented in this package.

Authors:Cyprien Mbogning <[email protected]> and Wilson Toussile

GPLTR_1.5.tar.gz
GPLTR_1.5.zip(r-4.5)GPLTR_1.5.zip(r-4.4)GPLTR_1.5.zip(r-4.3)
GPLTR_1.5.tgz(r-4.4-any)GPLTR_1.5.tgz(r-4.3-any)
GPLTR_1.5.tar.gz(r-4.5-noble)GPLTR_1.5.tar.gz(r-4.4-noble)
GPLTR_1.5.tgz(r-4.4-emscripten)GPLTR_1.5.tgz(r-4.3-emscripten)
GPLTR.pdf |GPLTR.html
GPLTR/json (API)

# Install 'GPLTR' in R:
install.packages('GPLTR', repos = c('https://cyprien84.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

2.76 score 19 scripts 286 downloads 3 mentions 14 exports 1 dependencies

Last updated 7 months agofrom:2f77ea59a6. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 25 2024
R-4.5-winOKOct 25 2024
R-4.5-linuxOKOct 25 2024
R-4.4-winOKOct 25 2024
R-4.4-macOKOct 25 2024
R-4.3-winOKOct 25 2024
R-4.3-macOKOct 25 2024

Exports:bag.aucoobbagging.pltrbest.tree.BIC.AICbest.tree.bootstrapbest.tree.CVbest.tree.permutenested.treesp.val.treepltr.glmpredict_bagg.pltrpredict_pltrtree2glmtree2indicatorsVIMPBAG

Dependencies:rpart

intro

Rendered fromintro.Rnwusingutils::Sweaveon Oct 25 2024.

Last update: 2015-06-16
Started: 2014-04-22